AstroGrid-D

Deliverables 3.4/3.5 AJ

Distributed File Management

Distributed File Management 2.0 and
Adaptation of Use Cases and TestingEI

Deliverables D3.4 / D35

Authors Ralf Wahner and Thomas Briisemeister

Editors Thomas Rablitz

Date 2008-08-04 11:40:32 +0200 (Mon, 04 Aug 2008)
Document Version 1.0.0

Current Version 1.0.0

Previous Versions 0.4.1,0.4.0, 0.3.8-0, 0.2.0, 0.1.0

A: Status of this Document
Deliverables D4 and D5 of working group 3.

B: Reference to project plan
Fourth and fifth deliverable of working group Distributed File Management.

C: Abstract

'This work is part of the AstroGrid-D project and D-Grid. The project is funded by the German Federal Ministry
of Education and Resarch (BMBF).

Distributed File Management 2.0 and Adaptation of Use Cases and Testing

Version 1.0.0

This deliverable documents the implementation of the AstroGrid-D file management system (D3.4)
and the adaptation of the use cases to it as well as basic functionality tests (D3.5).

D: Change History

‘ Version ‘ Date ‘ Name ‘ Brief summary

0.1.0 November 13" | Mikael Hogqvist, | Initial draft

2007 Thomas Brii-
semeister, Ralf
Wahner

0.2.0 May 13", 2008 Thomas Roblitz Structure

0.3.0 May 14", 2008 | Ralf Wahner IATEX-rootfile (wg3-d4.tex) revised. A se-
parate .tex file is assigned to each \sec-
tion{}. Several custom \newcommand{}s
in input/latex commands.tex.

0.3.1 May 14" 2008 Ralf Wahner Section 3.1 Command-line Interface provi-
ded (needs revision).

0.3.2 May 20" 2008 Ralf Wahner Subsections Editing Files and Retrieve Files
added. Several typos fixed.

0.3.3 June 277, 2008 Thomas R&blitz Added Chapter 5 Experiences in Using
ADM covering the content of Deliverable
3.5.

0.3.4 June 12t" 2008 | Ralf Wahner, | Chapter 4 Installation, Configuration and
Thomas Briise- | Administration of the ADM written. Sec-
meister tion 3.1 Application Programming Interface

written.

0.3.5 June 15" 2008 | Ralf Wahner, | Chapter 2 System Design completely rewrit-
Thomas Briise- | ten. Section Performance and Scalabil-
meister ity Test Environment Setup written.

0.3.6 June 16", 2008 | Ralf Wahner Subsection 4.2 Server Installation extended

(registering file-spaces with ADM).

0.3.7 June 17t 2008 Thomas Rablitz Section on basic tests and recommen-
dations for further improvements

0.3.8 June 18", 2008 | Ralf Wahner Subsection Virtual Filesystem and
Replica Operations completely rewritten.
Introductory paragraph for the sourcecode
example.

0.4.0 June 29t" 2008 Ralf Wahner Chapter 4 Installation, Configuration and
Administration of ADM revised. Section
5.2 Using the ADM for Managing NBody
Data still missing.

0.4.1 July 11*% 2008 Ralf Wahner Directory 3 4/misc now includes tree-
gen.pl, a Perl program for building a sys-
tematically configured testing environment
for ADM; see Section Performance and
Scalability Test Environment Setup.

1.0.0 August 4", 2008 | Ralf Wahner Final Version.

AstroGrid-D -2- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing

Version 1.0.0

Contents

|A. Status of this Document

IB._Reference ta project plan

0 N o o1 G

AstroGrid-D

Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

[Referenced 31

AstroGrid-D -4 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

1 Introduction

The first version of the Distributed File Management has been specified in Deliverable 3.2, [2], and
tested in Deliverable 3.3, [3]. Testing the initial approach revealed certain disadvantages concerning
working with as well as inherent properties of the Globus Replica Location Service (RLS). The second
version of the Distributed File Management, namely the AstroGrid-D Data Management (ADM),
presented in this deliverable, focuses on user-friendlyness and robustness of the file management and
storage capacity. The ADM, designed and written by Thomas Briisemeiste in the late summer of
2007, provides a virtual filesystem and simultaneously cares for the placement of the corresponding
physical files on one or more storage facilities. ADM is a tool for distributed data-management [I],
providing the following features:

e An intuitive command-line interface (simpler and more consistent than RLS).

Monitoring of the physical availability of a file linked to a symbolic name (dead link problem)
and automatically accessing a file replica if the requested one is not available.

Management of different storage servers (at the level of physical files).

Automatic maintenance of a core set of logical file metadata (creation time, owner, etc.).

Managing logical files in some hierarchical directory system (similar to a typical file system
hierarchy).

The term "AstroGrid-D Data Management” is equivalent to the notion of the "virtual filesystem”
and both are used interchangeably in this text. The subsequent second chapter describes the de-
sign underlying ADM. The third chapter presents the ADM command-line interface in a tutorial-like
manner and a reference documentation for the application programming interface. The forth chapter
concerns the installation procedure, configuration and administration of the AstroGrid-D Data Ma-
nagement. The last chapter covers the content of Deliverable 3.5 Adaptation of the Use Cases and
Testing of Deliverable 3.4.

2 System Design

The AstroGrid-D Data Management (ADM) implements a client-server approach. The client pro-
gram adm is based on the ADM library, both written in C, while the server (or "service”; see below)
is written in Java providing a straightforward access to PostgreSQL data bases. At the time of this
writing the ADM service occupies a single host, only. Spreading the service across two or more
hosts, i.e. migrating to a distributed service, is an issue for a future release. This chapter describes
ADM along general lines with selected items presented in more detail.

2.1 Introduction and Architecture Qutline

The protocol implemented by the ADM service is an application-level protocol for distributed filesys-
tem and replica management. It is based on HTTP/HTTPS, a widespread and well known protocol

2E-mail: tbruese@ari.uni-heidelberg.de

AstroGrid-D -5- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

for distributed, collaborative, hypermedia information systems. Instead of an additional messaging
layer like Simple Object Access Protocol (SOAP), the AstroGrid-D Data Management implements
a kind of Representational State Transfer (REST) interface in order provide filesystem and replica
management.

The ADM uses a relational database, namely PostgreSQL, to store a unique descriptor, i.e. a
Logical File Identifier (LFID) for each file, as well as meaningful or typical meta data for each file or
directory, e.g. the owner and a timestamp in order to log when the entry has been registered with the
filesystem. Figure[llon page [l shows the database table layout. Whereas file ownership and creation
timestamp are compulsory meta data and ADM transparently cares for their maintenance, individual
files can be endowed with custom (user-defined) properties. ADM provides the command-line client
adm, including a C-library, which offers an easy-to-use access to the stored files. Furthermore, ADM
ships with a web interface which permits to browse the virtual filesystem graphically; see Figure B
on page A

Figure Pl on page Bl shows a bird's eye view of the ADM architecture outline. Each host has an ADM
client installed, which communicates in two different ways with its enviroment. ADM implements
a virtual filesystem, i.e. something pretending to be a real filesystem like Ext-3, JFS or NTFS.
Physical files are renamed with a 32 bit hash value generated by means of the Message Digest 5
(MD5) algorithm on the file content and stored on so-called file-spaces in a flat hierarchy. While this
approach is advantageous from a technical point of view, because naming conflicts between files are
virtually impossible and searching the stock of files includes only a few subdirectories, the cryptic
filenames are unreadable for humans. This is, where the virtual filesystem comes into play. The
virtual filesystem maps each cryptic filename onto a human readable filename assigned by a human
user and stored in the aforementioned PostgreSQL data base. The two ways of communication
are between client and virtual filesystem on the one hand and between client an the file-space on
the other. ADM clients can talk directly to the file-spaces in order to read or write physical files,
whereas they need to contact the ADM service first, in order to access the data base tables that
constitute the virtual filesystem.

2.2 Format of the HTTP Response Message Body

Currently, three response formats are supported, namely none, csv and html. Common output
formats like JavaScript Object Notation (JSON) and the omnipresent Extensible Markup Language
(XML) are scheduled. The content type of an HTTP response message body can be controlled
by declaring the preferred Multipurpose Internet Mail Extensions (MIME) type in the header of the
request transmitted to the ADM service. To get the response message body in comma-separated
value (CSV) or HTML format the request header field Accept should be set to text/csv or
text/html, respectively. Setting the response format to none causes the ADM service to sent
back the HTTP status code, only, whereas the response message body is empty, which obviously
represents an economical way to try if a resource is valid and accessible prior to downloading it. The
header field Accept can be overriden by adding the query suffix ?format=<format> to the URL.
This is useful when trying to download the data in non-HTML format using a webbrowser.

AstroGrid-D -6 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing

contact

w provider contact- contact_id bigserial
.% provider_id bigserial _id firstname character varying(128)
S |provider_name character varying(128) ———» lastname character varying(128)
8 descripton character varying(2048) e-mail character varying(128)
e contact_id bigint telephone character varying(128)
g A institute character varying(128)
s provider id
o
n
é.) file_spaces

file_space_id bigserial

url character varying(1024)

status character (1)

provider_id bigserial

free_space bigint
> total_space bigint
'S
a A file space_id
A
: replicas file_properties
2 replica_id bigserial 1fid character varying(128)
5 1fid character varying (1024) propname character varying(128)
5 file_space_id character (1) propvalue character varying(1024)
& |created timestamp with time zone
S |e_notfound int 1fid
% e_noaccess int
E e_exception int

‘lfid
1fid
1fid character varying(128) -
-
S filesize bigint
Y |expires timestamp with time zone
v
& Bifia
v B
= - journal
[y grid_fs
_'E node_id bigint
arent_1 igint

G P id bigi
~ | node_type character (1)
g creator character varying(512)
E created timestamp with time zone
= | name character varying(64)

1fid character varying(128)

Figure 1: The current ADM database table layout (PostgreSQL) consists of seven tables. Primary
key fields are set in blue and foreign key fields in green letters. The journal table in the lower right
corner will allow to log the operations processed on the file system (the table is not yet used in the

current prototype).

2.3 LFID Reverse Lookup

The fully-qualified physical filenames (PFNs) behind a given Logical File Identifier (LFID) can be
resolved by means of /adm/1fid/<1£id>, which internally relies on the HTTP-method GET. Here,
"fully-qualified” refers not only to the path with respect to the root of the filesystem where the
physical file resides, but also to the employed host name, port number and transmission protocol,
i.e. HTTP, FTP or GSIFTP to name just a few. If replica exist, an LFID usually points to an "array”
of PFNs; see Section Understanding logical and physical filenames and mappings in Deliverable 3.3.

AstroGrid-D

Deliverables 3.4/3.5

Version 1.0.0

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

The PFNs are delivered to the requester wrapped up in the response message body. Otherwise, the
ADM service returns an HTML page containing the HTTP status code 404 (Not found).

2.4 Virtual Filesystem and Replica Operations

Virtual Filesystem and Replica Operations are common HTTP requests against the ADM service by
means of the HTTP-method POST. The request message body has the following format

<OPERATION> ADM/<PROTOCOL-VERSION>
<ATTRIBUTE-1> <ATTRIBUTE-VALUE-1>
<ATTRIBUTE-2> <ATTRIBUTE-VALUE-2>

<ATTRIBUTE-n> <ATTRIBUTE-VALUE-n>

<OPERATION> represents an intervention in the virtual filesystem and is one of: ADDFILE, which
registers a new file, RMFILE, which removes the file, all replicas and file properties, LINK, which
creates a reference to an existing file, ADDREP, which creates a replica of one file, RMREP, which
removes a replica, MKDIR, which creates a directory, RMDIR, which removes a directory, MOVE, which
moves a file or directory to a different location or renames the filesystem entry, PROPSET, which
endows a property to a file or PROPDEL, which removes a property from a file. Currently, the

oo - + o - +
| ADM Service | <--- »LFID -> PFN> ---> | Virtual Filesystem I
R p—— L R + Sy +
| |/ I
Transfer of | filesystem information | /adm-tutorial/ |
| | /astrogrid/ |
Fommmm - Fomm - + | /home/ |
| | | /incoming/ |
tomm oo Fomm - + tomm - Fommm - + | /lost+found/ |
| Host 1 | | Host n | | /performance-scalability/ |
L S + | /adm |
| ADM Client | | ADM Client | T +
LR S + LR S +
| |
oo - oo +
|
Transfer of | physical files
|
oo - YRy +
| I
Fommm oo S + LR R p—— +
| Filespace 1 | <--- replicate ---> | Filespace m |
R S + oo +

Figure 2: Architecture outline of the AstroGrid-D Data Management. One instance of the ADM
service handles requests sent by many clients and talks to the data base representing the virtual
filesystem. Transmission of physical files occurs directly between client and file-space. Note the
distinction between physical files and meta data in the lower/upper part of the figure, respectively.

AstroGrid-D -8- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

ADM service accepts one <PROTOCOL VERSION>, only, namely version 0.9. Each operation has an
individual number of Parameters represented as key-value-pairs, where key and value are separated
by whitespace and two adjacent pairs are separated by single line breaks. For example, the following
request instructs the ADM service to create the directory /new-directory directly below the root of
the virtual filesystem; note the leading slash (/):

MKDIR ADM/0.9
PATH /new-directory
USERDN /0=GermanGrid/0U=ZAH/CN=Ralf Wahner

ADM performs common filesystem operations like file and directory creation, renaming and moving
as well as deletion, to name just a few. The functional range of the filesystem operations provided
by ADM is declared in the special file PROTOCOL, which belongs to each copy of the ADM service
distribution below its "root directory” admservice. Beyond the mere "keywords” insertable for <OPE-
RATION> PROTOCOL specifies valid parameter names and values as well as the messages, the ADM
service returns depending on the outcome of the individual operation. The following sourcecode-like
formatted paragraph shows the specification for the command behind adm add and adm mkdir,
respectively:

Operation: ADDFILE
Registers a new file in the vfs
Required Attributes:
LFID MD5 checksum, 32 hex characters
PATH /path/in/vfs
FSPACE The file-space ID
URL The URL to the file-space
SIZE Filesize in bytes
USERDN The distinguished name of the user.

HTTP status codes:

200 OK

201 LFID already exists, created link, no transfer required
400 ERROR, message is delivered in HTTP-body

Operation: MKDIR
Creates a directory in the VFS
Required Attributes:
PATH /path/in/vfs
USERDN The distinguished name of the user.

HTTP status codes:

200 OK

400 ERROR, message is delivered in HTTP-body
404 Directory already exists

Apart from the ADM client program adm, requests for filesystem operations can be issued by any
program or tool capable of talking to a common HTTP server. Assume, that the above request to
create /new-directory has been written to the file request. mkdir. Then the request can be sent to
the ADM service by means of the plain old wget command-line tool:

agrid0640@alnitak:~$ wget --post-file=request.mkdir http://alnitak:12000/adm/
--13:46:09-- http://alnitak:12000/adm/

AstroGrid-D -9- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

=> ’index.html. 3’

Resolving alnitak... 129.206.110.246

Connecting to alnitak|129.206.110.246]:12000... connected.

HTTP request sent, awaiting respomnse... 200 0K

Length: 58

100%[>] 58 --.--K/s

13:46:09 (3.07 MB/s) - ’index.html.3’ saved [58/58]

3 ADM Interfaces

The AstroGrid-D Data Management (ADM) has a command-line interface for interactive manual
handling of a few files and directories as well as an application programming interface (API) in order
to communicate with the virtual filesystem directly from inside scientific code. Currently, the API
is restricted to C sourcecode, but bindings for Perl and Java are scheduled for the near future.

3.1 Command-line Interface

The command-line interface is meant for manual or scripting access to the virtual filesystem and is
equivalent to the application programming interface with respect to its functional range. First off,
this text concentrates on the command-line interface adm in a tutorial-like manner and defers the
discussion including the library to the second subsection.

3.1.1 Introduction and Basic Usage

ADM provides a set of commands that allow to add, delete or move/rename files and directories.
In the style of the Subversion syntax, an ADM command is composed of two "words” and one or
more arguments:

Basic adm command structure

adm <subcommand> argument (s)

The first word is always adm, the ADM client program, or tersely speaking, the client. The second
word is the actual instruction, alias subcommand, according to the client messages, that indicates
the operation to be carried out on the virtual filesystem, e.g. 1ist in order to display the contents
of a directory. Usually, an adm subcommand has one or two arguments, except for adm help which
has either none or a single argument as well as the always no-argument command adm info. First
off, if invoked without arguments adm help displays a list of all adm commands available: adm help
(no arguments)

Display available adm commands
agrid064Qalnitak:~$ adm help

adm command-line client, version 0.2.0
compiled on Mar 10 2008, 08:55:58

adm <subcommand> [options] [args]

AstroGrid-D - 10 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

Type ’adm help <subcommand>’ for help on a specific subcommand.

Available subcommands:
add (put)
edit (ed)
find
get
info
link (copy, cp, ln)
list (1s)
mkdir
move (mv, ren, rename)
propdel (pdel, pd)

propget (pget, pg)
proplist (plist, pl)
propset (pset, ps)
remove (rm, del, delete)
replicate (rep)

resolve (res)

rmdir

ADM is a tool for distributed data-management.
Copyright (c) 2007-2008 Thomas Bruesemeister, ZAH.

Remark: adm help can have an optional argument, namely a subcommand, in which case it shows
a more detailed documentation for subcommand; see below. When the requested subcommand is
misspelled or does not exist, adm help falls back to the above no-argument output.

At the time of this writing (06/2008), there is just one subcommand left, that has not yet been
included in the current version of the client, namely adm locate, to quickly look up files and
directories in the virtual filesystem. For the time being, the present client provides the slower but
more reliable £ind subcommand. The behavior of adm find and adm locate generally reflects
the corresponding Unix or Linux commands, where locate relies on a regulary refreshed database,
while find examines the given subtree of the filesystem in its current state each time it is invoked.
Since locate can "see” only what the filesystem contained when its database was recently refreshed,
newly created files and directories are invisible to 1ocate until the next database update happens.
On the other hand, locate is quite fast, because it merely queries its database instead of browsing
the whole filesystem. Since find analyzes a complete subtree of the filesystem entry-by-entry, i.e.
find is recursive by default, it unearths all files matching the search criterion right at the moment
of its invocation and therefore usually consumes more time.

According to the above output most ADM subcommands provide an abbreviated two-character-
version, e.g. adm ls vfs-path abbreviates adm list vfs-path, where "vfs" is short hand for
"virtual filesystem”. The 1ist (1s) subcommand displays the content of the directory specified by
vis-path:

Show root directory
agrid0640@alnitak:~$ adm 1ls /

adm-tutorial/
astrogrid/
home/
incoming/

AstroGrid-D - 11 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

Mozllla Firefox 2)

File Edit View Go Bookmarks Tools Help

@ S @ ﬁn?‘t | [E3 http://alnitak:12000/astrogrid/ |vi] |IGL

/astrogrid/

deliverables /O=GermanGrd/OU=ZAH/CN=Thomas Bruesemeister 0 Dec 7, 2007 5:32:14 PM

usecases /O=GermanGrd/OU=ZAH/CMN=Thomas Bruesemeister 0 Dec 7, 2007 5:33:45 PM

AstroGrd-D VFS browser [FileSystem | FileSpaces] Thomas Bruesemeister, ZAH

Done

Figure 3: ADM-Webinterface on http://alnitak.ari.uni-heidelberg.de:12000.

lost+found/
adm

Even though it means more typing, the code examples in this text use the more distinct non-
abbreviated notation. Table [l on page [IH shows all subcommands at hand with the current client
together with the short hand syntax, if available. Note, that following Unix and Linux habits, the
root directory of the virtual filesystem is /. Moreover, all ADM commands need absolute paths,
except for adm info which is the only no-argument command. Like its shell counterpart the 1s
command has an -1 command-line flag in order to show more elaborate information compared to
the sole file- or directory name:

Show root directory (verbose output)

agrid064@alnitak:~$ adm list -1 /

d nGrid/0U=ZAH/CN=Ralf Wahner 0 2008-01-08 10:25 adm-tutorial/

d ZAH/CN=Thomas Bruesemeister 0 2007-12-07 17:32 astrogrid/

d ZAH/CN=Thomas Bruesemeister 0 2007-12-07 17:31 home/

d ZAH/CN=Thomas Bruesemeister 0 2007-12-07 17:32 incoming/

d ZAH/CN=Thomas Bruesemeister 0 2008-03-05 09:51 lost+found/

d nGrid/0U=ZAH/CN=Ralf Wahner 0 2008-01-08 13:14 performance-scalability/
s ADM 0 2007-12-07 17:18 adm

7 entries

The leftmost column indicates the file type of the entries, where lowercase d is assigned to directo-
ries whereas lowercase £ denotes a file. ADM is a particular directory internally used by ADM for
administrative purposes and therefore has type s in order to be distinguishable from normal direc-
tories. The second column displays the file owner, compiled from the attribute mnemonics found

AstroGrid-D -12 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

in the users proxy certificate and truncated for the sake of readability. The two-character keywords
are defined in the Leightweight Directory Access Protocol (LDAP) specification and mean: common
name (CN), organization (0), organizational unit (0U) and country (C). The third column shows the
file size in bytes and intentionally vanishes for directories. Finally, the fourth column indicates date
and time when the entries were created.

Due to its presetting, adm list displays all entries in the specified directory, regardless of the
ownership. The -u flag suppresses all files and directories other than those owned by the user
invoking the adm 1s command:

Show root directory (verbose output)

agrid0640@alnitak:~$ adm list -1 /

d nGrid/0U=ZAH/CN=Ralf Wahner 0 2008-01-08 10:25 adm-tutorial/
d nGrid/0U=ZAH/CN=Ralf Wahner 0 2008-01-08 13:14 performance-scalability/
7 entries (5 filtered)

The output of adm help list demonstrates how to access the built-in documentation for an ADM
command and summarizes the previous two examples:

Show build-in help for ’list”’
agrid0640@alnitak:~$ adm help list

Lists files and directories in the virtual filesystem.
usage: 1list vfs-path

Valid Options:
-1 [--long] : use a long listing format
-u [--userdn-matches] : shows only entries matching your userdn

Example: adm 1ls -1 /home

By the way, as the above output shows, each adm help <subcommand> contains an example how
to use this subcommand.

3.1.2 Commit, Retrieve and Edit Files

At the beginning of the brief round tour about file management with ADM, a new directory /adm-
tutorial/vfs _tour is created by means of adm mkdir:

How to create a new directory
agrid064@alnitak:~$ adm mkdir /adm-tutorial/vfs_tour

According to Unix or Linux habits, a successful ADM command normally does not display a message.
Again, adm list verifies, that the new directory now exists:

Show directory /adm-tutorial (verbose output)
agrid064@alnitak:~$ adm list -1 /adm-tutorial

d nGrid/0U=ZAH/CN=Ralf Wahner 0 2008-01-08 10:16:42 vfs_tour/
1 entries

AstroGrid-D - 13- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

All operations in this text are supposed to take place in the above /adm-tutorial directory; see
above output of adm 1list -1 / on page [[Il A valid file or directory name, with respect to the
virtual filesystem implemented by the AstroGrid-D Data Management, may contain uppercase and
lowercase latin letters (a, ..., z, A, ..., Z), underscores (_), plus (+) and minus (-) signs as well as
dots (.), in other words any string matching the regular expression /7 [\w\-\+\.1+$/.

Commit Files. Files are committed to ADM by means of adm add, which is equivalent to adm
put. Assume that the current working directory contains the file my jobdescription.jsdl. This file
is then delegated to ADM by

How to register a file with ADM
agrid0640@alnitak:~$ adm add -v my_jobdescription.rsl /adm-tutorial

Source: file:///home/Agrid/agrid064/

Dest: gsiftp://alnitak.ari.uni-heidelberg.de/opt/d-grid/adm/fs01/
my_jobdescription.rsl -> aab3c89633c6af44407ecedeb98f4fbb
1743 bytes 0.01 MB/sec avg 0.01 MB/sec inst

Usually, adm add operates quiet. The above detailed output is due to providing the -v flag with the
command invokation. The target location with respect to the virtual filesystem can be a directory
path without trailing file name or a fully qualified file name. Note, that the client accepts absolute
paths, only, without exception, i.e. for all subcommands. If invoked without trailing file name,
adm add implicitely appends the basename of the physical file to the path with respect to the
virtual filesystem, whereas in the latter case, the file can in one step be put under ADM control
and renamed. The cryptic string aab3c89633c6af44407ecedeb98f4£b5 is generated by applying
the "Message-Digest Algorithm 5" on the file content, i.e. md5sum my_jobdescription.rsl, and
represents the name ADM uses internally to unequivocally identify my jobdescription.jsdl among
the other files registered with ADM.

By default, add behaves "non-recursive”, i.e. it handles just one file and no directories at a time.
In order to enable handling of whole filesystem subtrees, add and several other subcommands (see
Table P on [I8) own the -r flag. The following command was used to register the IATEX source of
this tutorial text with ADM:

How to register a filesystem subtree with ADM (ignore invisible entries)
agrid064@alnitak:~$ adm add -r adm-tutorial /adm-tutorial/latex-source

Note, that the /adm-tutorial/latex-source directory is supposed to exist before invoking the above
command; adm will complain otherwise. If invoked with the -r flag, according to its presetting, add
ignores files and directories with leading dot (.) in their name, i.e. "invisible” files and directories,
e.g. .bashrc or the .svn directories when the sourcecode underlies version control via Subversion.
This default behavior can be overridden by means of additionally providing the -a flag, which simply
tells the client to consider the dotted filesystem entries as well:

How to register a filesystem subtree with ADM (include invisible entries)
agrid064@alnitak:~$ adm add -r -a adm-tutorial /adm-tutorial/latex-source

The -p flag for add allows to specify the number of so-called "parallel streams” to use for the file
transfer and is directly handed over to the corresponding flag of the underlying globus-url-copy

AstroGrid-D - 14 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing

Version 1.0.0

‘ adm-Subcommand ‘ Options ‘ Description
add -a, -b, -p, -r, | Register a file with ADM. See mkdir for directories.
-8, -V
copy (cp) no options Create a new link to an already registered file. (Files only.)
delete (del) -r, -v Unregister a file from ADM. See rmdir for directories.
edit (ed) no options Allows in-situ editing on a registered file without down-
load.
find no options Search for files and directories matching a pattern.
get -b, -p, -, -s, | Download a file or directory registered with ADM.
'
info no options Print status and properties of the client (adm).
link (1n) no options See copy (cp)
list (1s) -1, -u Print the contents of a directory. (Directories only.)
 ihdsssil W ot e Mt ve o e 1ol s T
mkdir no options Register a new directory with ADM.
move (mv) no options Change the location or name of a file or directory.
propdel (pdel, pd) no options Unregister a property from a file registered with ADM.
propget (pget, pg) no options Retrieve a property value.
proplist (plist, pl) | no options Show the properties registered for a file.
propset (pset, ps) no options Register a property, i.e. a name-value pair, for a file reg-
istered with ADM. (Files only)
put -a, -b, -p, -r, | See add
-8, -V
remove (rm) -r, -v See delete (del)
rename (ren) no options See move (mv)
replicate (rep) -b, -s Creates a replica for a file registered with ADM. (Files
only.)
resolve (res) -a, -f, -1 Prints all replica available for a given file registered with
ADM.
rmdir no options Unregister an empty directory from ADM.

Table 1: Overview of the ADM-subcommands. The left column shows all subcommands available in
the current release. The column in the middle summarizes the flags available for each subcommand.
Since many flags are valid for two or more subcommands the description of the flags has been
separated from this table; see Table Pl on page I8 The right column briefly tells about the purpose
of the individual subcommands.

command. It is recommended to keep the presetting of four streams unchanged, i.e. to not use
-p, because experience has proven that four streams care for the best transfer capacity across the
internetB The add subcommand owns two more flags, namely -s and -b. Understanding these
flags which also appear with serveral other subcommands (again, see Table Pl on page Table [If]),
requires understanding the notion of the file-space. Therefore, introducing -s and -b is deferred to
the next subsection File-space Concept.

3See section Performance Options, "How do | pick a value?” under [B] for a short discussion on data transmission
with parallel streams and how to choose the number of connections.

AstroGrid-D - 15 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

‘ Option ‘ Occurence ‘ Description ‘

-a [--all] add, put Include files and directories when their names has
a leading dot (invisible files/directories).

-a [--all] resolve Show also replicas on inactive file-spaces.

-b [--fallback] add, get, put, re- | Try to access an alternative file-space if available

plicate and give up otherwise.

-f [--file] resolve Name of the file where all occurences of adm://
are supposed to be substituted by physical file
names.

-p [--parallel-streams] | add, get, put Specify how many parallel streams to use for the
data transfer. Default is 4 streams.

-r [--recursive] add, delete, get, | Apply command to the subtree of the filesystem

put, remove given by the command argument.

-s [--file-space] add, get, put Access the specified file-space only an give up im-
mediately if the file-space is unavailable.

-v [--verbose] add, delete, get, | Show verbose output for the command at hand.

put, remove

-1 [--long] list Show verbose information about files and direc-
tories, e.g. file owner and file size.

-u [--userdn-matches] list Show only files and directories owned be the user
who invoked the 1ist command.

Table 2: Options of the ADM-subcommands. Each one-character option has a corresponding long
version. Except for -a, which has different meanings for add (put) and resolve, the meaning of
the options is consistent for all subcommands; see Table [l on page

Move and Rename Files. Files and directories in the virtual filesystem can be moved from
one place to another by means of adm move, abbreviated by adm mv. This command has al-
ways two arguments, namely the entry to be moved and the target file or directory. Given, that
/adm-tutorial /vfs _tour has a subdirectory jsd/ the following command will change the location of
my_jobdescription.jsdl from /adm-tutorial/vfs tour to the new subdirectory:

Move a file to a different directory

agrid0640@alnitak:~$ adm move /adm-tutorial/vfs_tour/my_jobdescription.rsl \
/adm-tutorial/vfs_tour/jdsl

Verify that the file has successfully been relocated

agrid0640@alnitak:~$ adm 1ls -1 /adm-tutorial/vfs_tour/jdsl

f nGrid/0U=ZAH/CN=Ralf Wahner 1743 2008-01-08 23:49:08 my_jobdescription.rsl
1 entries

The content of the new directory is listed to immediately confirm, that the move operation has
occured. The same command is used to change file and directory names within the virtual filesystem.
Again, adm help denotes, that adm move, abbreviated by adm mv, is the same as adm rename,
abbreviated by adm ren.

Retrieve Files. Files and directories registered with ADM can be downloaded from the virtual
filesystem by means of adm get:

AstroGrid-D - 16 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

How to retrieve a single file registered with ADM

agrid0640@alnitak:~$ adm get -v /adm-tutorial/adm-tutorial.pdf
Source: gsiftp://alnitak.ari.uni-heidelberg.de/opt/d-grid/adm/£fs01/
Dest: file:///home/Tux/rwahner/

606423e0e5c49b093deb1le677dcaOb44 -> adm-tutorial.pdf

Also adm get is "non-recursive” by default but the -r switch enables the command to retrieve even
whole directories:

How to recursively retrieve a directory registered with ADM
agrid0640@alnitak:~$ adm get -r /adm-tutorial/latex-source/

This command downloads the aforementioned IATEX-sourcecode directory containing the ADM-
Tutorial.

Edit Files. The current subsection finishes with a quite smart feature of ADM, namely in-situ
editing a file under ADM control without prior downloading and subsequent uploading the file again
from/to the virtual filesystem. The following command opens the file sec 03.tex and displays its
contents readable and writable in the editor specified by means of the users $EDITOR environment
variable:

How to edit (in-situ) a file registered with ADM
agrid064@alnitak:~$ adm edit /adm-tutorial/latex-src/input/sec_03.tex

Figure @ on page [I8 shows the effect of the above command-line. Internally, ADM uses a file copy
with a special name in order to keep the former version save until the editor is appropriately closed
and the file is written back to the virtual filesystem. Editing on-site the storage location is handy for
minor quick modifications where retrieving the file locally, editing and later shoveling the file back
to ADM would be disproportionate.

3.1.3 File-space Concept

Where does a physical file reside, after it has been registered with AstroGrid-D Data Management?
ADM subcommands that actually transfer files in either direction between grid accounts and storage
facilities, i.e. the aforementioned adm (add|put) and the below described adm replicate and
adm get have two additional flags, namely -s and -b, which allow to specify a so-called file-space.
From the users perspective, a file-space is a large amount of disk space with a unique identifier
provided by a member of the AstroGrid-D community, that can be accessed to store scientific data.
Each client can individually select a default file-space. The client talks to a file-space by means of
its Uniform Resource Locator (URL).

Currently ADM owns three file-spaces, one at the "Center for Astronomy of Heidelberg” (3.64
Terabytes) and two at the "Astrophysical Institute Potsdam” (2x1.73 Terabytes), as the always
no-argument command adm info certifies:

Show status information about ADM (including all file-spaces available)

agrid0640alnitak:~$ adm info

AstroGrid-D - 17 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

- emacs@almrak EI @I

hsourceconment{ 4 Show root directory (verhose ouktput)} Ay

“sroindent {00} vshellprompt{} “sourcecodehighlight{adm 1s -1 /}\y [Ept]

“wsroindent{00}d nGrid/0U=2AH/CN=Ralf Wahner ‘“srcindent{3}0 2008-01-08 10:25 adm-tutorial/yy

“sroindent{00yd ZAH/CN=Thomas Bruesemeister ‘srcindent{3}0 2007-12-07 17:32 astrogrid/yh

“weroindent{00}d EAH/CN=Thomas Bruesemeister “srcindent{3}0 2007-12-07 17:31 home/4y\

“srocindent{00}d ZAH/CN=Thomas Bruesemeister ‘srcindent{3}0 2007-12-07 17:32 incoming/yy

“sroindent{00}d ZAH/CN=Thomas Bruesemeister ‘srcindent{3}0 2008-03-05 09:51 lost+foundsyy

“srcindent{00}d nGrid/0U=2aH/CN=Ralf Wahner ‘srcindent{3}0 2008-01-08 13:14 performance-scalability Ay
“wsroindent{00}s “wsrcindent{24}A0M “srcindent{3}0 2007-12-07 17:18 admiyy

“asroeindent{00}7 entries

“end{sourcecodeENV}

ERE

The leftmost column indicates the file type of the entries, where lowercase ‘sourcecode{d} is assigned to directories
whereas lowercase ‘sourcecode{f} denotes a file. “filen=zme{ADM} is a particular %%% ausgezeichnet (besonders)
directory internally used by “ADM{} for administrative purposes and therefore has type ‘sourcecode{s} in order to
be distinguishable from normal directories. The second column displays the file owner, compiled from the attribute
mnemonics found in the users proxy certificate and truncated for the sske of readability. The two-character keywords
are defined in the Leightweight Directory Access Protocol (LDAP) specification and mean: common name (ssourcecode{CN}),
organization (“sourcecode{0}), organizational unit (“sourcecode{0U}) and country (“sourcecods{C}). The third column
shows the file size in bytes and intentionally wanishes for directories. Finally, the fourth column indicates date and
time when the entries were created. The output of “sourcecode{adm help list} demonstrates how to access the built-in
documentation for an “ADM{} command and summarizes the previous two examples:

%% adm help list

“hegin{sourcecodeENV}

“sourceconment{t# Show build-in help for ''list''} 4N

“sroindent{00}sshellprompt{} “sourcecodehighlight{adm help list}yy [6pt]

“srocindent{00}Lists files and directories in the wirtual filesystem. 3% [6pt]

“sroindent{00}usage: list wfs-pathi\y [6pt]

“arcindent{00}Valid Options:\y

“sroindent{02}-1 [--long] “srcindent{ll}: use a long listing formatyy

Ssroindent{02}-u [--userdn-matches] “srcindent{l}: shows only entries matching your userdnyy [6pt]
“aroindent{00}Example: adm ls -1 /home

“end{sourcecodeENV}

ERE

By default, ‘sourcecode{adm list vfs-path} displays all entries in the “filename{wvfs-path} directory, where

‘'ufst ist short hand for ''wirtval filesystem'', regardless of their individual ownership.

The optional “sourcecode{-u} (‘sourcecode{-{}-user’-dn-mat*-ches}) switch allows to filter the

output in order to show only those files and directories that bhelong to the grid user who inwvoked the command.

#The “sourcecode{-h} switch is boolean, i.e. it is either present or shsent and newver has zn argument.

By the way, as the shove output shows, each “sourcecode{adm help <subcommand:} contains an example how

to uwse this “sourcecode{subcommand}.

-1:—- adm_eun7prk5 T T N |

Figure 4: In-situ editing a file registered with the virtual filesystem. adm edit allows quick modi-
fications on files without prior manual download and upload afterwards.

ADM service information, URL: http://alnitak.ari.uni-heidelberg.de:12000
Version: 0.2.0-dev, $Revision: 278 $
Protocol: ADM/0.9
Service uptime: 26 days 21:18:52
File-spaces: 3 [3 up O down]
LFIDs: 2122
Directories: 82
Replicas: 2141
MRU cache (size/hits/misses): 256/6834/2224
Path lookback (hits/misses): 2178/45

User-DN:
/0=GermanGrid/0U=ZAH/CN=Ralf Wahner

File-spaces:

ID S URL FREE TOTAL

1 a gsiftp://alnitak.ari.uni-heidelberg.de/... 3990339803400 4000000000000
2 a gsiftp://astrodatalO.gac-grid.org/... 1899768040842 1900000000000
3 a gsiftp://astrodatal7.gac-grid.org/... 1899999843231 1900000000000

Default file-space: 1

The URLs at the bottom end of the output are abbreviated for better readability. They are,
to their full extend gsiftp://alnitak.ari.uni-heidelberg.de/opt/d-grid/adm/fs01, gsiftp://astroda-

AstroGrid-D - 18 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

tal0.gac-grid.org/store/05/zah and gsiftp://astrodata07.gac-grid.org/store/02/ADM.

The command-line client uses the default file-space to place new files or to retrieve files that are
already under ADM control, unless told otherwise or the default file-space is not available. Beyond
unavailability of file-spaces, which can be caused e.g. by network failure or local administrative
issues, there are reasons for overriding the default setting and manually selecting another file-space,
e.g. duplicating crucial data for backup or shorter transfer distances across the internet. This is
where the flags -s and -b come into play. If -s (--file-space) is present but -b is not, the client
tries to access exactly the file-space given as the flag's argument. When the specified file-space
is inaccessible, the client immediately gives up and displays an error message. However, if the -b
(--fallback) flag is also present, the client will try one file-space after the other in order to access
the desired file and it won't give up until the last file-space fails as well.

3.1.4 File Replication and Cleanup

A replica of a file is a one-to-one copy of that file on a different file-space. Two replicas of a file
can never reside on the same file-space. Replicas are created for several reasons, e.g. to back
up significant data or to reduce the network transfer load by locating a file as near to the desired
computing resource as possible, to mention just two frequently named requirements. Unless told
otherwise, ADM implicitly selects an appropriate file-space, when adm replicate is called:

How to create replicas of files
agrid0640@alnitak:~$ adm replicate /tutorial/vfs_tour/my_jobdescription.rsl

Source: gsiftp://alnitak.ari.uni-heidelberg.de/opt/d-grid/adm/£s01/
Dest: gsiftp://astrodatall.gac-grid.org/store/05/zah/
aab3c89633c6af44407ecedeb98f4fbb

While adm 1list displays the files and directories on the specified level in the filesystem hierarchy,
adm resolve takes a filename argument and displays a list of locations of all replicas of that file,
so adm resolve is a kind of counterpart of adm list:

How to view available replicas and their locations
agrid0640@alnitak:~$ adm resolve /tutorial/vfs_tour/my_jobdescription.rsl

gsiftp://astrodatal0.gac-grid.org/store/05/zah/aab3c89633c6af44407ecedeb98f4fbb
gsiftp://alnitak.ari.uni-heidelberg.de/opt/d-grid/adm/fs01/aab3c89633c6af44407e-
cedeb98f4£fbb

After browsing the virtual filesystem in order to find a specific file, the retrieval starts operating by
means of adm get from the default file-space:

How to get a file out of the ADM
agrid0640@alnitak:~$ adm get /adm-tutorial/vfs_tour/my_jobdescription.rsl

Source: gsiftp://alnitak.ari.uni-heidelberg.de/opt/d-grid/adm/fs01/
Dest: file:///home/Agrid/agrid064/
aab3c89633c6af44407ecedeb98£4fb5 -> my_jobdescription.rsl

The commands adm replicate and adm get can provide the flags -s and -b, introduced in the
previous subsection File-space Concept, in order to manually select the file-space where the replica
should be placed or where the file should be retrieved from, respectively.

AstroGrid-D -19 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

Finally, files are deleted from the virtual filesystem by means of adm remove (abbreviated adm
rm) whereas directories are wiped out by means of adm rmdir. Non-empty directories cannot be
removed and file and directory removal is based on ownership, i.e. any user can delete filesystem
entries that he owns, only:

How to remove a file from the ADM

agrid0640@alnitak:~$ adm remove /vfs_tour/jsdl/my_jobdescription.rsl
agrid0640@alnitak:~$ adm rmdir /vfs_tour/jsdl/
agrid0640@alnitak:~$ adm rmdir /vfs_tour

3.1.5 Outlook

Careful readers might have noticed, that the commands concerning the user-defined file proper-
ties, namely adm prop(del|get|list|set) are not yet described in this tutorial. In order to
accommodate the way of thinking and the requirements of common scientific AstroGrid-D users,
a revised future version is supposed to guide readers along a typical scenario, i.e. an n-body or
p-grape numerical simulation, rather than "my_file.txt” and "my_directory”. Apart from those
two items, the authors welcome suggestions what should be included in this text; e-mail addresses
are rwahner@ari.uni-heidelberg.de (tutorial, this deliverable) and tbruese@ari.uni-heidelberg.de (de-
velopment). Please consider, that ADM has been released in Spring 2008 and development and
documentation need some time to accumulate the users’ experience. Thanks for you interest in the
AstroGrid-D Data Management.

3.2 Application Programming Interfacel

The ADM application programming interface allows to access the virtual filesystem directly from
inside any program written in C. The ADM API is equivalent to the command-line client adm with
respect to functional range. Usage of the ADM APl is declared by means of #include <adm>. The
ADM API contains the following functions:

adm_addfile() registers a file in the virtual filesystem and store it on a file-space.

int adm_addfile(adm_handle *handle, char *local_path, char *vfs_path)

Parameters: handle: The ADM (1libadm) instance handle, see adm_init(). local_path:
The absolute or relative path to a local file which should be stored in ADM. vfs_path: The
absolute destination path in the ADM virtual filesystem.

Return value: adm_addfile() returns 0 on success or one of the following error codes: ADM-
_ERROR, ADM_ESERVICE, ADM_EINTERRUPT.

adm_addrep () creates a replica of a file by copying the file to another file-space.
int adm_addrep(adm_handle *handle, char *vfs_path)

Parameters: handle: The ADM (1ibadm) instance handle, see adm_init (). vfs_path: The
absolute destination path in the ADM virtual filesystem.

*Contributed by: Thomas Briisemeister (tbruese@ari.uni-heidelberg.de)

AstroGrid-D -20- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

Return value: adm_addrep() returns O on success or one of the following error codes: ADM-
_ERROR, ADM_ESERVICE, ADM_EINTERRUPT.

adm_finalize() frees the resources used by the ADM library. After this function has been called
the handle is no longer valid.

void adm_finalize(adm_handle *handle)

Parameters: handle: The ADM (libadm) instance handle, see adm_init ().
Return value: adm_finalize() has no return value.

adm_get () retrieves a file from the ADM virtual filesystem by choosing a replica and transferring
the file using GridFTP.

int adm_get(adm_handle *handle, char *vfs_path, char *local_path)

Parameters: handle: The ADM (1ibadm) instance handle, see adm_init (). vfs_path: The
absolute path to a file in the ADM virtual filesystem. local_path: The absolute or relative
path where the file should be stored locally or NULL to store the file in the current working
directory and preserve the filename.

Return value: adm_get () returns 0 on success or one of the following error codes: ADM_ERROR,
ADM_EINTERRUPT.

adm_init () initializes the ADM library and returns a handle.
adm_handle *adm_init(char **msg)

Parameters: msg: If adm_init () fails an error message is stored there.
Return value: adm_init () returns an ADM instance handle on succes or NULL in case of an
error.

adm_link() creates a link to a file in the virtual filesystem (similar to a Unix hardlink)

int adm_link(adm_handle *handle, char *spath, char *dpath)

Parameters: handle: The ADM (1ibadm) instance handle, see adm_init ().

spath: The absolute path to a file in the virtual filesystem for which a link should be created.
dpath: The absolute path to a file which should point to the same LFID like the path in
spath.

Return value: adm_link() returns 0 on success or one of the following error codes: ADM_ER-
ROR, ADM_ESERVICE

adm_mkdir () creates a directory in the virtual filesystem.
int adm_mkdir(adm_handle xhandle, char *vfs_path)

Parameters: handle: The ADM (1ibadm) instance handle, see adm_init (). vfs_path: The
absolute path in the ADM virtual filesystem. The parent directory must exist.

Return value: adm_mkdir () returns O on success or one of the following error codes: ADM-
_ERROR, ADM_EEXTIST.

adm_move () moves or renames a file or directory in the virtual filesystem.

int adm_move(adm_handle *handle, char *src_vfs_path, char *dest_vfs_path)

AstroGrid-D -21- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

Parameters: handle: The ADM (libadm) instance handle, see adm_init (). src_vfs_path:
The source path of the file or directory in the virtual filesystem. dest_vfs_path: The
destination path of the the file or directory in the virtual filesystem.

Return value: adm_move () returns 0 on success or one of the following error codes: ADM_ER-
ROR, ADM_ESERVICE

adm_propdel () removes a property from a file in the virtual filesystem.

int adm_propdel(adm_handle *handle, char *vfs_path, char *prop_name)

Parameters: handle: The ADM (1ibadm) instance handle, see adm_init (). vfs_path: The
absolute path of the file in the ADM virtual filesystem. prop_name: The name of the property
which should be deleted.
Return value: adm_propdel () returns O on success or one of the following error codes: ADM-
_ERROR, ADM_ESERVICE.

adm_propset () adds a property to a file.

int adm_propset(adm_handle *handle, char *vfs_path, char *prop_name, char
*prop_value)

Parameters: handle: The ADM (libadm) instance handle, see adm_init(). vfs_path:
The absolute path of the file in the ADM virtual filesystem. prop_name: The name of the
property. prop_value: The value (content) of the property.

Return value: adm_propset () returns 0 on success or one of the following error codes: ADM-
_ERROR, ADM_ESERVICE.

adm_readdir () returns a list of directory entries from the ADM virtual filesystem.

adm_list_t *adm_readdir(adm_handle *handle, char *vfs_path)

Parameters: handle: The ADM (1ibadm) instance handle, see adm_init (). vfs_path: The
absolute path to a directory in the ADM virtual filesystem.
Return value: adm_readdir () returns a list of directory entries on success or NULL on error.

adm_rmdir () removes a directory from the virtual filesystem.

int adm_rmdir(adm_handle *handle, char *vfs_path)

Parameters: handle: The ADM (1ibadm) instance handle, see adm_init (). vfs_path: The
absolute path in the ADM virtual filesystem.

Return value: adm_rmdir () returns O on success or one of the following error codes: ADM-
_ERROR, ADM_ESERVICE.

adm_rmfile() removes a file from the virtual filesystem.

int adm_rmfile(adm_handle *handle, char *vfs_path)

Parameters: handle: The ADM (1ibadm) instance handle, see adm_init (). vfs_path: The
absolute destination path in the ADM virtual filesystem.

Return value: adm_rmfile() returns 0 on success or one of the following error codes: ADM-
_ERROR, ADM_ESERVICE.

adm_rmrep() removes a replica from a file in the virtual filesystem.

AstroGrid-D -22- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

int adm_rmrep(adm_handle *handle, char *vfs_path, int fspace)

Parameters: handle: The ADM (1libadm) instance handle, see adm_init(). local_path:
The absolute or relative path to a local file which should be stored in ADM. vfs_path: The
absolute destination path in the ADM virtual filesystem. fspace: The file-space ID which
identifies the replica uniquely for a given file (vfs_path) in the ADM virtual filesystem.
Return value: adm_rmrep() returns 0 on success or one of the following error codes: ADM-
_ERROR, ADM_ESERVICE.

3.2.1 Sourcecode Example

Following the reference documentation of the ADM API in the previous section this short section
presents an example for accessing the virtual filesystem from within a C program. In order to use
the ADM library the adm.h header file must be included:

#include <stdio.h>
#include <stdlib.h>
#include <adm.h>

int main()

{
adm_handle *handle = NULL; /* libadm instance handle */
FILE *fp = NULL; /* Just a test-file */
handle = adm_init (NULL); /* libadm initialization */

if (handle)

{
/* Now lets create a directory in the ADM virtual filesystem */
if (adm_mkdir (handle, ’’/mydir’’) == 0)

{
printf(*’Directory /mydir successfully created.\n’’);

}

else

{
printf(*’Could not create directory: Y%s\n”, adm_geterror(handle));
return 1;

}

/* Create a file and put it in ADM */
fp = fopen(’myfile”, *w+’’);

if (£p)
{
fprintf(fp, **Hello ADM!\n’’);
fclose(fp);
if (adm_addfile(handle, “myfile’’, *’/mydir’’) == 0)
{
printf(’File successfully put in ADM /mydir\n’’);
}
else
{
printf(*’Could not put file in ADM: %s\n’’, adm_geterror (handle));
return 1;
}

AstroGrid-D -23- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

}
else
{
printf (*’Could not open myfile\n’’);
}
}
return 0;

}

The sample program creates a directory and registers a new file with the virtual filesystem. The
bottom line is to remember three things: 1. The ADM library must be initialized by means of the
function adm_init (). 2. Each ADM function needs an ADM handle as its first argument. The
corresponding data type is defined in the ADM library. 3. When an ADM function fails, error
messages are accessible by means of adm_geterror(handle).

3.2.2 Compiling the Sourcecode

Point the environment variable ADM_LOCATION to the /ibadm installation directory. The sources of
the the code example can now be compiled and linked to a program using the following command:

cc admtest.c -o admtest -I${ADM_LOCATION}/include -L${ADM_LOCATION}/1ib -ladm

Currently, ADM provides bindings for C, only. A gateway for Java and Perl is scheduled for soon
release.

4 Installation, Configuration and Administration of ADM

ADM is a common client-server-application. In order to distinguish between the server host accom-
modating the ADM server from the latter itself, i.e. hardware from software, this text prefers the
notion of "ADM service” instead of "ADM server”. This makes sense, regarding the fact, that one
host usually provides more than one service.

The ADM distribution consists of two parts, namely the client program, described in Section Bl
Command-line Interface and the service program, or tersely speaking "the service”. The distribution
is available for download from SVN at the following addresses:

Checkout a working copy of the adm client
agrid0640@alnitak:~$ svn co svn://svn.gac-grid.org/software/adm/trunk

Checkout a working copy of the adm server
agrid0640@alnitak:~$ svn co svn://svn.gac-grid.org/software/admservice/trunk

The service needs PostgreSQL and PL/pgSQL; see below. The client requires the libaries libcurl,
libcurl-dev, libssl and libssl-dev, which usually ship with each common Linux distribution. If not,
the libraries are available from http://curl.-haxx.se or http://www.openssl.org, respectively.

Let admsrvroot be the superuser of the ADM server, admsrvuser be an AstroGrid-D-member,
admsrvhost the host where the ADM server is to be installed and admsrvport the port where the
ADM server ist listening for requests sent by ADM clients.

AstroGrid-D - 24 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

4.1 Client Installation and Configuration

Installing the ADM client consists of five steps: 1. Check out the software from the URL given above
and change to the adm directory. Figure Bl on page BBl shows the most important items in adm. 2.
Run the bootstrap.sh shell script. 3. Invoke configure with an appropriate --prefix depending on
the user privileges and the preferred location. 4. Call make install. 5. Finally, extend .bashrc by
the following command:

export ADM_SERVICE_URL=http://admsrvhost:admsrvport

If the ADM service is up and running the client programm adm can now connect.

4.2 Service Installation and Configuration

The ADM service requires Java 6 as well as a PostgreSQL data base and this text assumes, that the
data base server is already installed and running and that the readers permissions are sufficient in
order to create new tables and data sets. In addition, the ADM service needs the Procedural Lan-
guage/PostgreSQL Structured Query Language (PL/pgSQL), which is used to implement custom
methods applied to the data base tables. The PL/pgSQL is provided to PostgreSQL data base by
means of

How to provide PL/pgSQL on the command-line
agrid0640@alnitak:~$ createlang plpgsql;

Remark. This command requires superuser privileges with respect to the data base (not the operating
system) and has therefore not been included in the set-up-script rebuild.sh; see below.

Installing the ADM service consists of six steps: 1. Check out the software from the URL given
above. 2. Install the PL/pgSQL extension package if not already present. 3. Change to the

adm

|

+-- admadmin/ // ADM administration tool ’’admadmin’’

|

+-- admclient/ // ADM command-line client program ’’adm’’

+-- bootstrap.sh, configure.in, Makefile.am

+-- dist/ //

-!-__ doc/ // ADM Tutorial
-l-—— libadm/

-l-—— README

Figure 5: ADM client installation. Contents of the adm directory.

AstroGrid-D -25- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

admservice directory and invoke ant there (don't modify build.xml). 4. Configure the file-spaces
to be registered with the ADM service by means of the SQL script provider.sql. 5. Customize
and invoke rebuild.sh to create the data base tables required by the virtual filesystem. 6. Finally,
customize admserv.conf and invoke the service start-up script admserv.sh. Change to the directory
admservice. Figure [l on page P7l shows the most important items in admservice. For historical
reference, admservice also contains the directory dist.

First off, the ADM service needs at least one file-space. Integrating file-spaces with the ADM
service requires superuser privileges with respect to the PostgreSQL data base. It is recommended
to customize the SQL script provider.sql in the admservice/setup/ directory to set up the file-spaces,
which is implicitely called by rebuild.sh, another script in the ADM service distribution; see below.
The SQL script provider.sql reads:

\set ON_ERROR_STOP

INSERT
INTO contact (
contact_id, firstname, lastname,
email, telephone, institute
) VALUES (
1, ’Thomas’, ’Bruesemeister’,
’tbruese@ari.uni-heidelberg.de’, ’06223/54-1834°,
’Astronomisches Rechen-Institut Heidelberg’
)3
INSERT
INTO provider (
provider_name, description, contact_id
) VALUES (
’ARI’,
’Astronomisches Rechen-Institut am Zentrum fuer Astronomie in Heidelberg’,

INSERT

INTO file_spaces (
file_space_id, url, status,
provider_id, total_space, free_space

) VALUES (
1, ’gsiftp://alnitak.ari.uni-heidelberg.de/opt/d-grid/adm/dev_£fs01’, ’a’,
1, 40000000000, 40000000000

)

File-space registration involves three data base tables, namely contact, provider and file_spaces.
The contact table describes the people responsible for the set up and maintenance of the ADM
service. The above version of provider.sql contains only one entry honoring the developer who
brought the AstroGrid-D Data Management into being, Thomas Briisemeister. The contact table
can hold as many people as needed. Since a provider can dedicate more than one file-space to the

AstroGrid-D - 26 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

admservice
+-- bin/ // Server configuration, startup and logging
: +-- adm.{logl|log.1lck}
: +-- admserv.conf
: +-- admserv.sh
l—— build.xml
+-- 1ib/ /]
+-- admService. jar
+-- postgresql-8.2-506.jdbc3. jar
+-- PROTOCOL
+-- setup/ // Data base table set up
| I

| +-- rebuild.sh

+-- src/de/astrogrid/adm/ // Java source code
Figure 6: ADM service installation. Contents of the admservice directory.

AstroGrid-D community, providers and file-spaces are maintained by means of different tables. The
above entries in provider and file_spaces are supposed to be self-explanatory so that no further
discussion is needed. Also these tables can hold as many entries as required.

The shell script rebuild.sh creates the data base tables, ADM needs in order to implement the virtual
filesystem and especially runs the above SQL script provider.sql setting up the file-spaces available
for ADM. There are two modifications required before running rebuild.sh:

#!/bin/sh

DB=adm # Leave value unchanged
DBUSER=admsrvroot # (1) ADM superuser

DBHOST=admsrvhost # (2) Host where the ADM service resides

sql[1]=admdb.sql
sql[2]=functions/getpath.sql
sql[3]=functions/getnodeid.sql
sql[4]=provider.sql

for i in ${sql[*]}; do
psql -h ${DBHOST} -f $i ${DB}
if [$7 -ne 0]; then
echo ’Failed setting up the database schema.”
exit 1;
fi

AstroGrid-D - 27 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

done

Even though, installing the ADM service is independent from the configuration file admserv.conf,
the basic customization can be prepended in one go. According to Figurell on page 271 admserv.conf
which resides in the bin directory. The basic configuration only needs the parameters adm.db.host
and adm.db.user which are equivalent to the fields DBUSER and DBHOST in the above shell script re-
build.sh. The configuration file admserv.conf reads as follows, where all parameters are highlighted:

adm.http.port=12000

adm.http.secure=no
javax.net.ssl.trustStore=/.../cakey
javax.net.ssl.keyStore=/.../hostcert.pl2

Sets the log level
Possible values: severe, warning, info, config, fine, finer, finest
adm.log.level=info

Use grid-mapfile authorization?
adm.auth.gridmap=true

Default grid-mapfile location is /etc/grid-security/grid-mapfile
adm.auth.gridmap-file=/home/Tux/rwahner/admservice/grid-mapfile

adm.db.host=admsrvhost

adm.db.name=adm

adm.db.user=admsrvroot

adm.db.password=foo

Cache for the most recently used entries in the VFS
adm.cache.vfs.mru-cache-size=256

After successfully installation, the ADM service is started by means of the shell script admserv.sh
located in the bin directory:

Start ADM service
agrid064@alnitak:~$./admsrv.sh

The -h flag of admserv.sh allows to start-up the ADM service as a background daemon. In the
current release, the ADM service requires a restart after modifying the configuration file admser-
v.conf.

5 Experiences in Using ADM

We evaluated the ADM by performing basic functionality tests (cf. Section B.1l) and by using the
ADM for managing data of the NBody use case (cf. Section ?7).

5.1 Basic Functionality Tests

The ADM provides an easy to use interface. Particularly, the easy and uniform access to help pages
are a welcome improvement over the Globus Replica Location Service. It also solves the dead link

AstroGrid-D - 28 - Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

problem by testing if a replica still exists or not. Because the ADM uses a basic storage protocol,
i.e., gsiftp, it is possible to manipulate the physically stored files. In particular, a malicious user
might replace replicas with faulty copies without notice of the ADM.

Further improvements of the ADM include the reduction of data transfers and the selection of the
storage space. Currently, the ADM transfers all registered files from the source to some storage
space. These data transfers are a potential bottleneck and may not be neccessary at all. While the
ADM supports multiple storage spaces, in the present version, it belongs to the user to select the
space (other than the default) manually.

5.2 Performance and Scalability Test Environment Setup

On the long run, ADM should be subjected to systematic investigation concerning its behavior with
respect to the number and size of the files and directories in the virtual filesystem as well as heavy
multiple client access. The performance of the virtual filesystem is a measure for the ability to
process many requests against the ADM service from one or more ADM clients. Those requests
are creation, modification or deletion of files and directories. The scalability is a measure for the
dependency of the performance on the "charging level” of the filesystem, e.g. the depth as well as
the number of entries in the filesystem tree. Usually, a filesystem is said to scale strong (bad), if
an increasing stock of entries causes operations to slow down, whereas the scaling is weak (good),
otherwise. Obviously, weak scaling should be preferred, if it doesn’t imply further drawbacks.

In order to care for a systematically configured testing environment, the ADM client distribution
provides the Perl programm tree-gen.pl, contributed by Ralf Wahner in January 2008. tree-gen.pl
can be found either in the dist directory of the client distribution or in the directory 3 4/misc which
belongs to the IATEX sourcecode of this deliverable (svn export svn://svn.gac-grid.org/do-
cuments/wg-3/deliverables/3_4 downloads a non-working copy of Deliverable 3.4 Distributed
File Management 2.0 and Adaptation of Use Cases and Testing).

Clear and brief, tree-gen.pl builds a file and directory structure in the virtual filesystem, based
on three user-specified parameters: depth of the directory tree (-t), number of subdirectories per
directory (-s) and number of files per directory (-f). There are more sophisticated flags available
and each flag has a corresponding long-version; see below:

tree-gen.pl: how to build a sample tree in the virtual filesystem
agrid0640@alnitak:~$ tree-gen.pl -t 2 -s 2 -f 2

e - [T [T [T, +
Inner	3	6	9
Leaf	4	8	12
Total	7	14	21
e - [T [T [T, +

[1 of 21: 4%]: adm mkdir /performance-scalability/d0_0

[2 of 21: 9%]: adm add /performance-scalability/d0_0/£f1_0

[3 of 21: 14%]: adm add /performance-scalability/d0_0/f1_1

[4 of 21: 19%]: adm mkdir /performance-scalability/d0_0/d1_0

[5of 21: 23%]: adm add /performance-scalability/d0_0/d1_0/£2_0
[6 of 21: 28)]: adm add /performance-scalability/d0_0/d1_0/f2_1
[7 of 21: 33%]: adm mkdir /performance-scalability/d0_0/d1_0/d2_0

AstroGrid-D -29- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

[8 of 21: 38%]: adm add /performance-scalability/d0_0/d1_0/d2_0/£3_0
[9 of 21: 42)]: adm add /performance-scalability/d0_0/d1_0/d2_0/£3_1
[10 of 21: 47)]: adm mkdir /performance-scalability/d0_0/d1_0/d2_1

[11 of 21: 52)]: adm add /performance-scalability/d0_0/d1_0/d2_1/£3_0
[12 of 21: 57%]: adm add /performance-scalability/d0_0/d1_0/d2_1/£3_1
[13 of 21: 61%]: adm mkdir /performance-scalability/d0_0/d1_1

[14 of 21: 66%]: adm add /performance-scalability/d0_0/d1_1/£2_0

[15 of 21: 71%]: adm add /performance-scalability/d0_0/d1_1/f2_1

[16 of 21: 76%]: adm mkdir /performance-scalability/d0_0/d1_1/d2_0

[17 of 21: 80%]: adm add /performance-scalability/d0_0/d1_1/d2_0/£3_0
[18 of 21: 85%]: adm add /performance-scalability/d0_0/d1_1/d2_0/£3_1
[19 of 21: 90%]: adm mkdir /performance-scalability/d0_0/d1_1/d2_1

[20 of 21: 95%]: adm add /performance-scalability/d0_0/d1_1/d2_1/£3_0
[21 of 21: 100%]: adm add /performance-scalability/d0_0/d1_1/d2_1/£3_1
Remark: wuse ’’tree-gen.pl -t 2 -s 2 -f 2 -c” to cleanup this tree.

done.

Figure [on page illustrates the file and directory structure set up by means of the above
parameters. The depth specified by -t concerns the directory part of the tree. The root node d0_0
has depth 0. Two depth levels follow. Below d2_0 and d2_1 are the leaf file nodes, so the depth of
the file tree is one more than the depth of the directory tree. The ASCII table immediately below
the above command-line displays basic properties of the file and directory structure specified by the
switches -t, -s and -f. The progress display has been included in the output in order to keep
track of the program operation for large trees. Calling tree-gen.pl on the command-line without
parameters reveals the full stock of flags available:

tree-gen.pl: command-line flags

Fommmmm +
| do_o |
[
|
|
e S Fomm e mom Fomm oo +
| | | |
| | | |
[B L Tyt S SUp SR
| at_0 | | da1_1 | | £1.0 | | £1_1 |
oot B g E R S, +
| |
| |
oo [S, [+ S Fomm oo [R, +
| | | | | | | |
| | | | | | | |
[—") Hoomtoot Fom—toot Foo—to—t oot B T S S U S}
| d2_0 | | d2_1 | | £2.0 | | f2_1 | | d2_0 | | d2_1 | | £2.0 | | f2_1 |
toomto—t B Ty S SR S oot B gy L S, +
| | | |
| | | |
P —— P —— P —— P ——
| | | | | | | |
| | | | | | | |
B LT T YUt S U AR B G Ty S S SR S
| £3.0 | | £3.1 | | £3.0 | | £3_1 | | £3.0 | | £3.1 | | £3.0 | | £3_1 |
Fommmmm EE S, EN S, R S + Fommmmm R S E R Y EE S, +

Figure 7: File and directory tree created with tree-gen.pl. The character d denotes a directory, £
denotes a file. The underscore-separated integer numbers indicate depth of the node with respect
to the root node and the zero-based "item count”, e.g. £2_0 (the blue node) is the first file node
with respect to its parent directory node d1_0 and resides on the second level of depth below the
root node d0_0, which is always a directory.

AstroGrid-D -30- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

agrid0640@alnitak:~$ tree-gen.pl

usage: tree-gen.pl

-t|--dir-tree-height <height of directory tree>
-s|--dir-child-nodes <number of subdirs per node>
-f|--file-child-files <number of files per node>
[-d|--die-on-error] <abort programm if adm return code != 0>

[-ul--unify-file-content] <use unique dummy file content>
[-al--adm-directory-prefix] <mount point of d400_00>
[-c|--cleanup] (noarg, boolean switch)
[-pl--tree-properties-only] (noarg, boolean switch)

The switches -t, -s and -f have been described above. By convention, programs return 0 after
successful operation and a different value otherwise and so does the ADM client program adm. Due
to its presetting, tree-gen.pl does not care for the return value provided by adm. The -d flag can
be set to tell tree-gen.pl to interrupt its operation, in case adm returns something different from 0.
By default, tree-gen.pl builds the file and directory structure below /performance-scalability in the
virtual filesystem. The -a flag allows to choose a different directory. Also by default, the content
of the dummy file generated by tree-gen.pl is unique inside one run, however it is deterministic.
This means, that two different users running tree-gen.pl with the same command-line parameters
will try to place the same files in the virtual filesystem. (Recall, that ADM uses a 32 bit hash value
as file name which is generated from the file content by means of the Message Digest 5 algorithm,
i.e. congruent files have identical hash values.) The -u flag extends the dummy file content by
user-specific data and a timestamp, making the content unambiguous. Even though the -c flag is
a remnant from those days when ADM could not yet delete directories recursively, it is still useful
and cleans up the directory structure according to the compulsory command-line parameters -t, -s
and -f.

Finally, the -p switch does not build the file and directory tree but displays the "data sheet” matching
the command-line parameters -t, -s and -f; see above output of tree-gen.pl -t 2 -s 2 -f
2. The -p switch is quite useful to check the tree size before starting tree-gen.pl in real operation,
since the node count rapidly increases due to exponential parameters in the formula. The number
of directory nodes evaluates to a geometric series:
D1 9 t_t i_l_StJrl
=1l4+s+s"+...+s —;s =1

where ¢t and s # 1 correspond to the flags -t, i.e. the depth of the directory tree, and -s, i.e.
the number of subdirectories. If s = 1, i.e. one subdirectory per directory, the number of directory
nodes is equal to ¢ + 1. Let furthermore f correspond to the flag -f, i.e. the number of files per
directory. Now the number of file nodes computes to F' = f - D and the full file and directory tree
owns a total of D+ F = (1 + f) - D nodes. There are s’ leaf directory nodes and f - s leaf file
nodes, which means that there are D — st inner directory nodes and F' — f - s’ inner file nodes. The
"data sheet” behind the -p flag relies on these formulas.

References

[1] AstroGrid-D Data Management (ADM) build-in documentation, accessible by means of adm
help (general information) or adm help <subcommand> (manual page for individual subcom-
mand).

AstroGrid-D -31- Deliverables 3.4/3.5

Distributed File Management 2.0 and Adaptation of Use Cases and Testing Version 1.0.0

[2] Deliverable 3.2: Distributed File Management, Data- and Replica-management in AstroGrid-
D, (Version 1.0.0, public release with comments incorporated).

[3] Deliverable 3.3: Distributed File Management, Tests of the Data- and Replica-Management
Software for Selected Use Cases, (Version 1.0.0).

[4] Collins-Sussman, Ben; Fitzpatrick, Brian W. and Pilato, C. Michael: Version Control with
Subversion, for Subversion 1.4 (Compiled from r2866), see http://svnbook.red-bean.com or
file svn-book.pdf located in directory .../misc.

[5] The official globus-url-copy website: globus-url-copy — Multi-protocol data movement at
http://www.globus.org/toolkit/docs/4.0/data/gridftp/rn01re01.html.

AstroGrid-D -32- Deliverables 3.4/3.5

	A. Status of this Document
	B. Reference to project plan
	C. Abstract
	D. Change History
	Introduction
	System Design
	Introduction and Architecture Outline
	Format of the HTTP Response Message Body
	LFID Reverse Lookup
	Virtual Filesystem and Replica Operations

	ADM Interfaces
	Command-line Interface
	Introduction and Basic Usage
	Commit, Retrieve and Edit Files
	File-space Concept
	File Replication and Cleanup
	Outlook

	Application Programming Interface
	Sourcecode Example
	Compiling the Sourcecode

	Installation, Configuration and Administration of ADM
	Client Installation and Configuration
	Service Installation and Configuration

	Experiences in Using ADM
	Basic Functionality Tests
	Performance and Scalability Test Environment Setup

	References

